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NONSTATIONARY RAREFACTION FLOWS HAVING SYMMETRY
0. V. Rysev

ABSTRACT. Nonstationary isentropic rarefaction
flows having axial or central symmetry are examined.
Using the canonical form for describing the relation-
ships satisfied along the characteristics, we show
that under specific conditions the rarefaction flows
may contain a characteristic along which the velocity
and speed of sound change during flow from a certain
steady source.

1. Nonstationary isentropic gas flows with axial or central symmetry

may be described by a system of two equations [1]:

du ~ du dc
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and by the equation of continuity
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Here'u is velocity; ¢ — speed of sound; r — 3-dimensional coordinates;
t — time; k = 1/y = 1, Yy — adiabatic index; v = 2,3 — for flows with
axial and central symmetry, respectively.

The relationships which are satisfied along the characteristic
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- by introducing the function
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(1.4)

2a=u*+ '2xc",w ' B = eyt i

may be reduced to the canonical form [2]
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The plus sign corresponds to characteristics of the first family; the

minum sign corresponds to the second family.

It follows from the compatibility conditions (1.5) thatif the functions
a(r,t), B(r,t) are constant along a certain line L, then this line is the
characteristic. In actuality, if this is not the case, then the solution
of the Cauchy problem for Equations (1.1) and (1.2) in a characteristic
triangle, limited by part of the line L and by two characteristics of
opposite families, is o = const, B = const, i.e., in the vicinity of the

line L the flow is stationary, which is impossible by definition.

We shall show that in certain cases nonstationary rarefaction flows may /35
contain a characteristic supporting the stationary state, i.e., the charac-

teristic on which o = const, B = const.

We shall assume that in the rarefaction flow the velocity in the particle
can only increase, and the speed of sound can only decrease. Atvan arbitrary
moment of time, the velocity also increases with an increase in the radius;
the speed of sound also decreases, i.e., we assume that in each inner point
in the region of rarefaction flow the following inequality is satisfied

du du du du de  dc dc dc
—=—du—>0, —>0 —=—adu—<0 —<0 (1.6)
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We shall call the region defined by the lines ¢ = f,(r),it = fa(r)and by the
lines ¢{ = ¢(r), t = @.(r),intersecting the lines t=/,(r),t = f:(r), the 6-region,

where fi(r), f2(r); @:(r), 9:(r) are single-valued functions of its argument, 1f the
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signs of the derivatives 0u/8t and 8¢/t coinecide within this region, and

du’ dc du ac‘ e N W,
-55—-0, —529&0 (—é—t-#o,-a-;=0) along 11neq‘t=—..f,(r_\
ou | dc _tdu dc R

'FE#O, —a—t—=04\5;=<0, 5#0) along line 't = f,(r) |

Theorem. If the derivatives of u and ¢ with respect to the coordinate
and time are continuous functions within the 6-region, then flow in thisg

region cannot be rarefaction flow.

Let us assume the opposite. Let us assume a certain flow contains the
6-region, in which the derivativesdu/dr, du/dt, dc/dr, dc/dt are continuous
functions; we shall also assume that the inequalities (1.6) are also
satisfied in the O6-region. For purposes of simplicity, we shall assume that

@(r) ==const==12,, @.(r) =const=¢, (fz>1%,)
and for purposes of definition, we shall assume that
du;0t=0, dc:dt=0 along t=/fi(r).

du/ot=+0, dc Jot=0 alo’ngiz-"—"f;(r)_"

Let us introduce the function

into the discussion, where A is an arbitrary continuous function greater than

Zexo.

Since = -—2xAdec /¢, Y =du/dt, respectively, along t = fl(r) and t =

fz(r), and the derivativesdc/ it and!du/dthave the same sign, then in the case




of motion along the line t=1t, (& <% <1) a certain point P(r,to)'is always
found, at which [3]

: ea T e
v=(G2ag)=0 (1.7)
It follows from (1.6) that at the point P(r,to)
du  , _dc
g teBgy =0 1.8
T =0 | (1.8

where B is a certain function of the point P(r,yo) which is greater than zero.
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Utilizing (1.1) and (1.2), the Equations (1.7) and (1.8) may be written /36

as follows

e e wn
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It follows from (1,lQ)/that flow in the 6-region cannot be subsonic,
since otherwise the arﬁitrary function A may be selected so that M < A < M&ln
_Thus, u~ Ac <0 and ¢ - Au > 0 and, ‘consequently, all terms in (1.10) have

the same sign which is impossible.

Let us assume the flow is supersonic. Excluding from (1.9) and (1.10)

theyderivative dc/dr., we obtain

du du | o 7 :
u —de—B (B v =B — (1.11)
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It follows from (1.9) that B = c/u along the line t = fz(r), where dc/dt = 0,
Let us set B = Ac/u; then . '
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Utilizing the equation of continuity, we obtain

-0t A or

If 9c/0t >0, within the O-region, then it follows from (1.6) and (1.13)
that A > 1. Selecting the arbitrary function A in such a way that

1 1 a—1
O <M — ==
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we find that the coefficient before the second term in (1.11) is positive,

and consequently the equation cannot be satisfied.

Let us assume dc/dt <0, within the 6-region. It then follows from (1.6)

and (1.13) that A < 1. In this case, if the arbitrary function A is selected »
so that

M A . '
A>——>0
M;(1-A)> M>1, A<1)
then the inequality
1 1 1—A
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is satisfied automatically, and the parentheses before the first and second

terms in (1.12) are negative, which is impossible.
These contradictions prove the theorem.
Thus, if we impose additional conditions in the form of inequalities

(1.6) on the initial system of Equations (1.1) and (1.2), then the rarefaction

flows which can be realized cannot contain the 6-region.



2. Let us examine the following problem. We shall assume we have a
spherical (cylindrical) plunger of radius Tgs within which there is a gas
at rest. The speed of sound in the entire gas volume is constant and equals
Co* At the moment of time t = 0, the plunger begins to move according to the
law

d*r

- d
=r(t), —(E->O, — >0, ro=r(0), ’

— — (2.1)
dt t=0

I
o

dt dt?

Moving rapidly, at a certain moment of time t,, the plunger breaks away
from the gas. We thus assume that the rarefaction wave front CD, reflected

from the center (axis) of symmetry, does not overtake the plunger (Figure 1).

Let us explain how the functions
o and B change in the particle. Utiliz-

ing the Equations (1.1) and (1.2), we

obtain

dg 98 9B B du
—_— =t U= ——

dt ot - 8 at .

T (2.2)

; da 6g.+- da 9 dc
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Figure 1 IIt follows from physical considera-
tions that the following holds at the

rarefaction wave front and at the initial section of the plunger motion

du/ot’> 0, de/dt < 0 (2.3)

and in the vicinity of the point N(t,p» r(t**)) at the plunger, the following
holds '

ulot<0,  dc/ot>0 (2.4)

Actually, after the plunger has broken away from the gas, the boundary

between the gas and the cavity (separation front) moves at a constant speed

*
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[4], which means that the velocity decreases during motion in any direction

" within the gas.

Since the derivatives of u and c with respect to the coordinate and the
’ time are continuous functions in the wave ABCD, it follows from conditions
(2.3) and (2.4) that the wave ABCD contains the line Ll’ along which du/dt

= 0, and the line L, along which dc/dt=0,

If we assume that the lines L1 and L2 do not coincide, then — moving
together with the boundary — in order to change from inequalities (2.3) to
inequalities (2.4), it is necessary to pass through the 6-region. However,
according to the theorem just proven the 6-region cannot exist in the flow
under consideration. In view of this, the lines Ll and L2 must coincide,
i.e., in the case of the plunger expansion according to a certain law (2.1)

the line L, exists in the region ABCD, along which

u/dt=20c/dt =20 ‘ (2.5)

With allowance for (1.1), (1.2) and (2.5), along the line L,, we have

Ba/0t=0p /0t =0a/0r=0p/0r=0 (2.6)

and, consequently, the functions o and B are constant. The line, supporting
the constant values of the functions o and B in a nonstationary flow, is the
characteristic, in this case the characteristic of the second family. It
follows from (2.6) that along the characteristic L, we have

dc ow? du ctu
(@ =) (V=)= =0, (=)= (v =) =0 @2.7)

This means that it lies in the .supersonic region, with allowance for (1.6).

Assigning the index (*) to the functions o and 8 on the line L,, assum-
ing the Mach number M is the parameter, we obtain the>following from Formulas

3
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(1.4), (1.5)

' u— (2ae) M (M 20)%,  c— (2as) % (M + 2%) b,
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Here t,, r(t*) are the coordinates of the plunger, for which (2.5) holds;

M, is the corresponding Mach number.

If the moment of time t, is known, then the quantities r(t*), 0,» B, and
M, are found by means of (2.1), and consequently the characteristic of L, may
be determined. However, the moment of time t, depends greatly on the nature
of the plunger motion for t < t,, and it apparently may be determined only
completely by solving the problem. Therefore, we may only state that, in the
case of plunger expansion according to a certain law (2.1), the characteristic
of the second family exists in a nonstationary rarefaction wave ABCD, along
which the velocity and speed of sound change just as in flow from a stationary
source. The position of this characteristic in the physical plane and in the

holograph plane depends greatly on the parameter t,.

We shall show that the characteristic L, after intersecting the weak
discontinuity CD, degenerates into the customary characteristic, along which
the functions o and B are variable. In actuality, if this is not the case
and the characteristic L, exists in the region located above the line CD
(Figure l), in .view of (2.7) and (1.6), M > 1 along it, i.e., it cannot be
closed on the axis r = 0 in a certain moment of time. On the other hand,

for sufficiently large moments.of time, when the motion is inertial, we have
u=T czxrv-a=_1_p(_’_) (2.9)
A 1 2 t

where F(r/t) is a certain finite function [1].

It may thus be seen that, for sufficiently large moments of time, in
the flow region the lines B = B, cannot exist, i.e., the characteristic L
*
8
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Figure 2 Figure 3

cannot exist in the region above the line CD (Figure 1).

Let us now examine the case when the rarefaction wave front CD, support-
ing the discontinuity of the derivatives and reflected from the center (axis)
of symmetry, overtakes the plunger at a certain point D(tl, r(tl))@ If (2.4)
is satisfied when the plunger moves left along the trajectory at the point
D(tl, r(tl)), then, just as above, it may be shown that the characteristic /39

L, exists [line MP (Figure 2].

If (2.3) is satisfied when the plunger moves along the trajectory at
the point D(tl, r(tl)), and (2.4) is satisfied when it moves to the right,
then the characteristic L, cannot exist. In actuality, it follows from

(2.4) that at the point D(tl, r(tl))
.. ou cu
2 e 02— —_—)— =0
(= ) —(v = )

Consequently, M > 1, In view of this, the characteristic of the second
family leaving the point d(tl, r(tl)) and supporting the discontinuity of

the derivatives is in the supersonic region. From conditions (2.9), the
function B at this characteristic will be as small as desired at large values

o£ t.



If the derivatives gu/ atkéhaﬁc/ 9t .undergo a discontinuity at the point
D(tl’ r(tl)), but do not change sign, (0u2/0t remains positive, anddc/dt is
negative), then just as above, it is found that the characteristic L, exists
[line MN (Figure 3)].

In conclusion the author would like to thank A. A. Nikol'skiy for

formulating the problem.
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